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Multiclass Data Segmentation using Diffuse
Interface Methods on Graphs

Cristina Garcia-Cardona, Ekaterina Merkurjev, Andrea L. Bertozzi, Arjuna Flenner and Allon G. Percus

Abstract—We present two graph-based algorithms for multiclass segmentation of high-dimensional data on graphs. The algorithms
use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation and graph cuts. A multiclass
extension is introduced using the Gibbs simplex, with the functional’s double-well potential modified to handle the multiclass
case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm uses a graph
adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding.
We demonstrate the performance of both algorithms experimentally on synthetic data, image labeling, and several benchmark data
sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of
the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with
or better than the current state-of-the-art in multiclass graph-based segmentation algorithms for high-dimensional data.

Index Terms—segmentation, Ginzburg-Landau functional, diffuse interface, MBO scheme, graphs, convex splitting, image processing,
high-dimensional data.

I. INTRODUCTION

Multiclass segmentation is a fundamental problem in ma-
chine learning. In this paper, we present a general approach to
multiclass segmentation of high-dimensional data on graphs,
motivated by the diffuse interface model in [4]. The method
applies L

2

gradient flow minimization of the Ginzburg-Landau
(GL) energy to the case of functions defined on graphs.

The GL energy is a smooth functional that converges, in
the limit of a vanishing interface width, to the total variation
(TV) [5], [44]. There is a close connection between TV
minimization and graph cut minimization. Given a graph
G = (V,E) with vertex set V , edge set E, and edge weights
wij for i, j 2 V , the TV norm of a function f on V is

||f ||TV =

1

2

X

i,j2V

wij |fi � fj |. (1)

If fi is interpreted as a classification of vertex i, minimizing
TV is exactly equivalent to minimizing the graph cut. TV-
based methods have recently been used [8], [9], [57] to find
good approximations for normalized graph cut minimization,
an NP-hard problem. Unlike methods such as spectral cluster-
ing, normalized TV minimization provides a tight relaxation
of the problem, though cannot usually be solved exactly. The
approach in [4] performs binary segmentation on graphs by
using the GL functional as a smooth but arbitarily close
approximation to the TV norm.

Our new formulation builds on [4], using a semi-supervised
learning (SSL) framework for multiclass graph segmentation.
We employ a phase-field representation of the GL energy
functional: a vector-valued quantity is assigned to every node
on the graph, such that each of its components represents the
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fraction of the phase, or class, present in that particular node.
The components of the field variable add up to one, so the
phase-field vector is constrained to lie on the Gibbs simplex.
The phase-field representation, used in material science to
study the evolution of multi-phase systems [32], has been
studied previously for multiclass image segmentation [47].
Likewise, the simplex idea has been used for image segmen-
tation [13], [37]. However, to the best of our knowledge, our
diffuse interface approach is the first application of a vector-
field GL representation to the general problem of multiclass
semi-supervised classification of high-dimensional data on
graphs.

In addition, we apply this Gibbs simplex idea to the
graph-based Merriman-Bence-Osher (MBO) scheme devel-
oped in [49]. The MBO scheme [50] is a well-established PDE
method for evolving an interface by mean curvature. As with
the diffuse interface model, tools for nonlocal calculus [33]
are used in [49] to generalize the PDE formulation to the
graph setting. By introducing the phase-field representation to
the graph-based MBO scheme, we develop another new and
highly efficient algorithm for multiclass segmentation in a SSL
framework.

The main contributions of our work are therefore twofold.
First, we introduce two new graph-based methods for multi-
class data segmentation, namely a multiclass GL minimization
method based on the binary representation described in [4] and
a multiclass graph-based MBO method motivated by the model
in [49]. Second, we present very efficient algorithms derived
from these methods, and applicable to general multiclass high-
dimensional data segmentation.

The paper is organized as follows. In section II, we discuss
prior related work, as well as motivation for the methods
proposed here. We then describe our two new multiclass
algorithms in section III (one in section III-A and one in III-B).
In section IV, we present experimental results on benchmark
data sets, demonstrating the effectiveness of our methods.
Finally, in section V, we conclude and discuss ideas for future
work.
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II. PREVIOUS WORK

A. General Background

In this section, we present prior related work, as well
as specific algorithms that serve as motivation for our new
multiclass methods.

The discrete graph formulation of GL energy minimization
is an example of a more general form of energy (or cost)
functional for data classification in machine learning,

E( ) = R( ) + µ|| � ˆ ||, (2)

where  is the classification function, R( ) is a regularization
term, and || � ˆ || is a fidelity term, incorporating most
(supervised) or just a few (semi-supervised) of the known
values ˆ . The choice of R has non-trivial consequences in
the final classification accuracy. In instances where || · ||
is the L

2

norm, the resulting cost functional is a tradeoff
between accuracy in the classification of given labels and
function smoothness. It is desirable to choose R to preserve the
sharp discontinuities that may arise in the boundaries between
classes. Hence the interest in formulations that can produce
piecewise constant solutions [7].

Graph-based regularization terms, expressed by way of the
discrete Laplace operator on graphs, are often used in semi-
supervised learning as a way to exploit underlying similarities
in the data set [3], [14], [61], [66]–[68]. Additionally, some
of these methods use a matrix representation to apply eq. (2)
to the multiple-class case [14], [61], [66], [68]. The rows in
the matrix correspond to graph vertices and the columns to in-
dicator functions for class membership: the class membership
for vertex i is computed as the column with largest component
in the ith row. The resulting minimization procedure is akin
to multiple relaxed binary classifications running in parallel.
This representation is different from the Gibbs simplex we
use, as there is usually no requirement that the elements in
the row add up to 1. An alternative regularization method for
the graph-based multiclass setup is presented in [56], where
the authors minimize a Kullback-Leibler divergence function
between discrete probability measures that translates into class
membership probabilities.

Not all the methods deal directly with the multiple classes in
the data set. A different approach is to reduce the multiclass
case to a series of two-class problems and to combine the
sequence of resulting sub-classifications. Strategies employed
include recursive partitioning, hierarchical classification and
binary encodings, among others. For example, Dietterich and
Bakiri use a binary approach to encode the class labels [22].
In [39], a pairwise coupling is described, in which each two-
class problem is solved and then a class decision is made
combining the decisions of all the subproblems. Szlam and
Bresson present a method involving Cheeger cuts and split
Bregman iteration [34] to build a recursive partitioning scheme
in which the data set is repeatedly divided until the desired
number of classes is reached. The latter scheme has been
extended to mutliclass versions. In [10], a multiclass algorithm
for the transductive learning problem in high-dimensional data
classification, based on `1 relaxation of the Cheeger cut and
the piecewise constant Mumford-Shah or Potts models, is

described. Recently, a new TV-based method for multiclass
clustering has been introduced in [9].

Our methods, on the other hand, have roots in the contin-
uous setting as they are derived via a variational formulation.
Our first method comes from a variational formulation of the
L
2

gradient flow minimization of the GL functional [4], but
which in a limit turns into TV minimization. Our second
method is built upon the MBO classical scheme to evolve
interfaces by mean curvature [50]. The latter has connections
with the work presented in [26], where an MBO-like scheme
is used for image segmentation. The method is motivated by
the propagation of the Allen-Cahn equation with a forcing
term, obtained by applying gradient descent to minimize the
GL functional with a fidelity term.

Alternative variational principles have also been used for
image segmentation. In [47], a multiclass labeling for image
analysis is carried out by a multidimensional total variation
formulation involving a simplex-constrained convex optimiza-
tion. In that work, a discretization of the resulting PDEs is
used to solve numerically the minimization of the energy. Also,
in [13] a partition of a continuous open domain in subsets with
minimal perimeter is analyzed. A convex relaxation procedure
is proposed and applied to image segmentation. In these cases,
the discretization corresponds to a uniform grid embedded
in the Euclidean space where the domain resides. Similarly,
diffuse interface methods have been used successfully in image
impainting [6], [23] and image segmentation [26].

While our algorithms are inspired by continuous processes,
they can be written directly in a discrete combinatorial setting
defined by the graph Laplacian. This has the advantage, noted
by Grady [37], of avoiding errors that could arise from a
discretization process. We represent the data as nodes in
a weighted graph, with each edge assigned a measure of
similarity between the vertices it is connecting. The edges
between nodes in the graph are not the result of a regular
grid embedded in an Euclidean space. Therefore, a nonlo-
cal calculus formulation [33] is the tool used to generalize
the continuous formulation to a (nonlocal) discrete setting
given by functions on graphs. Other nonlocal formulations for
weighted graphs are included in [25], while [35] constitutes a
comprehensive reference about techniques to cast continuous
PDEs in graph form.The approach of defining functions with
domains corresponding to nodes in a graph has successfully
been used in areas, such as spectral graph theory [16], [51].

Graph-based formulations have been used extensively for
image processing applications [7], [18], [19], [25], [36]–[38],
[48], [54]. Interesting connections between these different
algorithms, as well as between continuous and discrete op-
timizations, have been established in the literature. Grady has
proposed a random walk algorithm [37] that performs interac-
tive image segmentation using the solution to a combinatorial
Dirichlet problem. Elmoataz et al. have developed general-
izations of the graph Laplacian [25] for image denoising and
manifold smoothing. Couprie et al. in [18] define a conve-
niently parameterized graph-based energy function that is able
to unify graph cuts, random walker, shortest paths and water-
shed optimizations. There, the authors test different seeded
image segmentation algorithms, and discuss possibilities to
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optimize more general models with applications beyond image
segmentation. In [19], alternative graph-based formulations of
the continuous max-flow problem are compared, and it is
shown that not all the properties satisfied in the continuous
setting carry over to the discrete graph representation. For
general data segmentation, Bresson et al. in [8], present
rigorous convergence results for two algorithms that solve
the relaxed Cheeger cut minimization, and show a formula
that gives the correspondence between the global minimizers
of the relaxed problem and the global minimizers of the
combinatorial problem. In our case, the convergence property
of GL to TV has been known to hold in the continuum [44],
but has recently been shown in the graph setting as well [5].

B. Binary Segmentation using the Ginzburg-Landau Func-
tional

The classical Ginzburg-Landau (GL) functional can be
written as:

GL(u) =
✏

2

Z
|ru|2dx+

1

✏

Z
�(u)dx, (3)

where u is a scalar field defined over a space of arbitrary
dimensionality and representing the state of the phases in the
system, r denotes the spatial gradient operator, �(u) is a
double-well potential, such as �(u) = 1

4

(u2 � 1)

2, and ✏ is a
positive constant. The two terms are: a smoothing term that
measures the differences in the components of the field, and
a potential term that measures how far each component is
from a specific value (±1 in the example above). In the next
subsection, we derive the proper formulation in a graph setting.

It is shown in [44] that the ✏! 0 limit of the GL functional,
in the sense of �-convergence, is the Total Variation (TV)
semi-norm:

GL(u)!
�

||u||TV . (4)

Due to this relationship, the two functionals can sometimes be
interchanged. The advantage of the GL functional is that its
L
2

gradient flow leads to a linear differential operator, which
allows us to use fast methods for minimization.

Equation (3) arises in its continuum form in several imaging
applications including inpainting [6] and segmentation [26].
In such problems, one typically considers a gradient flow in
which the continuum Laplacian is most often discretized in
space using the 4-regular graph. The inpainting application
in [6] considers a gradient flow in an H�1 inner product re-
sulting in the biharmonic operator which can be discretized by
considering two applications of the discrete Laplace operator.
The model in (3) has also been generalized to wavelets [23],
[24] by replacing the continuum Laplacian with an operator
that has eigenfunctions specified by the wavelet basis. Here
we consider a general graphical framework in which the graph
Laplacian replaces the continuum Laplace operator.

We also note that the standard practice in all of the ex-
amples above is to introduce an additional term in the energy
functional to escape from trivial steady-state solutions (e.g., all
labels taking on the same value). This leads to the expression

E(u) = GL(u) + F (u, û), (5)

where F is the additional term, usually called fidelity. This
term allows the specification of any known information, for
example, regions of an image that belong to a certain class.

Inspired in part by the PDE-based imaging community,
where variational algorithms combining ideas from spectral
methods on graphs with nonlinear edge detection methods are
common [33], Bertozzi and Flenner extended in [4] the L

2

gradient flow of the Ginzburg-Landau (GL) energy functional
to the domain of functions on a graph.

The energy E(u) in (5) can be minimized in the L
2

sense
using gradient descent. This leads to the following dynamic
equation (modified Allen-Cahn equation):

@u

@t
= ��GL

�u
� µ

�F

�u
= ✏�u� 1

✏
�

0
(u)� µ

�F

�u
(6)

where � is the Laplacian operator. A local minimizer is
obtained by evolving this expression to steady state. Note that
E is not convex, and may have multiple local minima.

Before continuing further, let us introduce some graph
concepts that we will use in subsequent sections.

1) Graph Framework for Large Data Sets: Let G be an
undirected graph G = (V,E), where V and E are the sets of
vertices and edges, respectively. The vertices are the building
blocks of the data set, such as points in Rn or pixels in an
image. The similarity between vertices i and j is measured by
a weight function w(i, j) that satisfies the symmetric property
w(i, j)= w(j, i). A large value of w(i, j) indicates that vertices
i and j are similar to each other, while a small w(i, j) indicates
that they are dissimilar. For example, an often used similarity
measure is the Gaussian function

w(i, j) = exp

✓
�d(i, j)2

�2

◆
, (7)

with d(i, j) representing the distance between the points
associated with vertices i and j, and �2 a positive parameter.

Define W as the matrix Wij = w(i, j), and define the
degree of a vertex i 2 V as

di =
X

j2V

w(i, j). (8)

If D is the diagonal matrix with elements di, then the graph
Laplacian is defined as the matrix L = D�W.

2) Ginzburg-Landau Functional on Graphs: The continu-
ous GL formulation is generalized to the case of weighted
graphs via the graph Laplacian. Nonlocal calculus, such as
that outlined in [33], shows that the Laplace operator is
related to the graph Laplacian matrix defined above, and
that the eigenvectors of the discrete Laplacian converge to
the eigenvectors of the Laplacian [4]. However, to guarantee
convergence to the continuum differential operator in the limit
of large sample size, the matrix L must be correctly scaled
[4]. Although several versions exist, we use the symmetric
normalized Laplacian

Ls = D� 1
2LD� 1

2
= I�D� 1

2WD� 1
2 . (9)

since its symmetric property allows for more efficient imple-
mentations. Note that Ls satisfies:

hu,Lsui =
1

2

X

i,j

w(i, j)

 
uip
di
� ujp

dj

!
2

(10)
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for all u 2 Rn. Here the subscript i refers to the ith coordinate
of the vector, and the brackets denote the standard dot product.
Note also that Ls has nonnegative, real-valued eigenvalues.

Likewise, it is important to point out that for tasks such as
data classification, the use of a graphs has the advantage of
providing a way to deal with nonlinearly separable classes as
well as simplifying the processing of high dimensional data.

The GL functional on graphs is then expressed as

GL(u) =
✏

2

hu,Lsui+
1

4✏

X

i2V

�
u2

i � 1

�
2

, (11)

where ui is the (real-valued) state of node i. The first term
replaces the gradient term in (3), and the second term is the
double-well potential, appropriate for binary classifications.

3) Role of Diffuse Interface Parameter ✏: In the mini-
mization of the GL functional, two conflicting requirements
are balanced. The first term tries to maintain a smooth state
throughout the system, while the second term tries to force
each node to adopt the values corresponding to the minima of
the double-well potential function. The two terms are balanced
through the diffuse interface parameter ✏.

Recall that in the continuous case, it is known that the GL
functional (smoothing + potential) converges to total varia-
tion (TV) in the limit where the diffuse interface parameter
✏! 0 [44]. An analogous property has recently been shown in
the case of graphs as well, for binary segmentations [5]. Since
TV is an L

1

-based metric, TV-minimization leads to sparse
solutions, namely indicator functions that closely resemble
the discrete solution of the original NP-hard combinatorial
segmentation problem [9], [57]. Thus, the GL functional
actually becomes an L

1

metric in the small ✏ limit, and leads to
sharp transitions between classes. Intuitively, the convergence
of GL to TV holds because in the limit of a vanishing
interface, the potential takes precedence and the graph nodes
are forced towards the minima of the potential, achieving a
configuration of minimal length of transition. This is contrast
to more traditional spectral clustering approaches, which can
be understood as L

2

-based methods and do not favor sparse
solutions. Furthermore, while the smoothness of the transition
in the GL functional is regulated by ✏, in practice the value
of ✏ does not have to be decreased all the way to zero to
obtain sharp transitions (an example of this is shown later
in Figure 4). This capability of modeling the separation of a
domain into regions or phases with a controlled smoothness
transition between them makes the diffuse interface description
attractive for segmentation problems, and distinguishes it from
more traditional graph-based spectral partitioning methods.

4) Semi-Supervised Learning (SSL) on Graphs: In graph-
based learning methods, the graph is constructed such that the
edges represent the similarities in the data set and the nodes
have an associated real state that encodes, with an appropriate
thresholding operation, class membership.

In addition, in some data sets, the label of a small fraction of
data points is known beforehand. This considerably improves
the learning accuracy, explaining in part the popularity of
semi-supervised learning methods. The graph generalization
of the diffuse interface model handles this condition by using

the labels of known points. The GL functional for SSL is:

E(u) =

✏

2

hu,Lsui+
1

4✏

X

i2V

�
u2

i � 1

�
2

+

X

i2V

µi

2

(ui � ûi)
2 . (12)

The final term in the sum is the new fidelity term that enforces
label values that are known beforehand. µi is a parameter that
takes the value of a positive constant µ if i is a fidelity node
and zero otherwise, and ûi is the known value of fidelity node
i. This constitutes a soft assignment of fidelity points: these
are not fixed but allowed to change state.

Note that since GL does not guarantee searching in a space
orthogonal to the trivial minimum, alternative constraints could
be introduced to obtain partitioning results that do not depend
on fidelity information (unsupervised). For example, a mass-
balance constraint, u ? 1, has been used in [4] to insure
solutions orthogonal to the trivial minimum.

C. MBO Scheme for Binary Classification

In [50], Merriman, Bence and Osher propose alternating
between the following two steps to approximate motion by
mean curvature, or motion in which normal velocity equals
mean curvature:

1) Diffusion. Let un+ 1
2

= S(�t)un where S(�t) is the
propagator (by time �t) of the standard heat equation:

@u

@t
= �u. (13)

2) Thresholding. Let

un+1

=

(
1 if un+ 1

2 � 0,

�1 if un+ 1
2 < 0.

This MBO scheme has been rigorously proven to approximate
motion by mean curvature by Barles [2] and Evans [27] .

The algorithm is related to solving the basic (unmodified)
Allen-Cahn equation, namely equation (6) without the fidelity
term. If we consider a time-splitting scheme (details in [26])
to evolve the equation, in the ✏ ! 0 limit, the second step is
simply thresholding [50]. Thus, as ✏ ! 0, the time splitting
scheme above consists of alternating between diffusion and
thresholding steps (MBO scheme mentioned above). In fact,
it has been shown [53] that in the limit ✏ ! 0, the rescaled
solutions u✏(z, t/✏) of the Allen-Cahn equation yield motion
by mean curvature of the interface between the two phases of
the solutions, which the MBO scheme approximates.

The motion by mean curvature of the scheme can be gen-
eralized to the case of functions on a graph in much the same
way as the procedure followed for the modified Allen-Cahn
equation (6) in [4]. Merkurjev et al. have pursued this idea
in [49], where a modified MBO scheme on graphs has been
applied to the case of binary segmentation. The motivation
comes from [26] by Esedoglu and Tsai, who propose threshold
dynamics for the two-phase piecewise constant Mumford-Shah
(MS) functional. The authors derive the scheme by applying a
two-step time splitting scheme to the gradient descent equation
resulting from the minimization of the MS functional, so that
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the second step is the same as the one in the original MBO
scheme. Merkurjev et al. in [49] also apply a similar time
splitting scheme, but now to (6). The �u term is then replaced
with a more general graph term �Lsu. The discretized version
of the algorithm is:

1) Heat equation with forcing term:

un+ 1
2 � un

dt
= �Lsu

n � µ(un � û). (14)

2) Thresholding:

un+1

i =

(
1, if un+ 1

2
i > 0,

�1, if un+ 1
2

i < 0.

Here, after the second step, un
i can take only two values of 1 or

�1; thus, this method is appropriate for binary segmentation.
The fidelity term scaling can be different from the one in (6).

The following section describes the modifications intro-
duced to generalize this functional to multiclass segmentation.

III. MULTICLASS DATA SEGMENTATION

The main point of this paper is to show how to extend prior
work to the multiclass case. This allows us to tackle a broad
class of machine learning problems.

We use the following notation in the multiclass case. Given
ND data points, we generalize the label vector u to a label
matrix U = (u

1

, . . . ,uND )
T . Rather than node i adopting a

single state ui 2 R, it now adopts a composition of states
expressed by a vector ui 2 RK where the kth component of
ui is the strength with which it takes on class k. The matrix
U has dimensions ND ⇥K, where K is the total number of
possible classes.

For each node i, we require the vector ui to be an element
of the Gibbs simplex ⌃

K , defined as

⌃

K
:=

(
(x

1

, . . . , xK) 2 [0, 1]K

�����

KX

k=1

xk = 1

)
. (15)

Vertex k of the simplex is given by the unit vector ek,
whose kth component equals 1 and all other components
vanish. These vertices correspond to pure phases, where the
node belongs exclusively to class k. The simplex formulation
has a probabilistic interpretation, with ui representing the
probability distribution over the K classes. In other segmenta-
tion algorithms, such as spectral clustering, these real-valued
variables can have different interpretations that are exploited
for specific applications, as discussed in [38], [48].

A. Multiclass Ginzburg-Landau Approach

The multiclass GL energy functional for the phase field
approach on graphs is written as:

E(U) =

✏

2

hU,LsUi+
1

2✏

X

i2V

 
KY

k=1

1

4

kui � ekk2L1

!

+

X

i2V

µi

2

kui � ˆuik2 , (16)

where

hU,LsUi = trace(UTLsU),

and ûi is a vector indicating prior class knowledge of sample
i. We set ûi = ek if node i is known to be in class k.

The first (smoothing) term in the GL functional (16) mea-
sures variations in the vector field. The simplex representation
has the advantage that, like in Potts-based models but unlike
in some other multiclass methods, the penalty assigned to
differently labeled neighbors is independent of the integer
ordering of the labels. The second (potential) term drives the
system closer to the vertices of the simplex. For this term, we
adopt an L

1

norm to prevent the emergence of an undesirable
minimum at the center of the simplex, as would occur with
an L

2

norm for large K. The third (fidelity) term enables the
encoding of a priori information.

Note that one can obtain meaningful results without fidelity
information (unsupervised), but the methods for doing so are
not as straightforward. One example is a new TV-based mod-
ularity optimization method [41] that makes no assumption as
to the number of classes and can be recast as GL minimization.
Also, while �-convergence to TV in the graph setting has been
proven for the binary segmentation problem [5], no similar
convergence property has yet been proven for the multiclass
case. We leave this as an open conjecture.

Following [4], we use a convex splitting scheme to minimize
the GL functional in the phase field approach. The energy
functional (16) is decomposed into convex and concave parts:

E(U) = E
convex

(U) + E
concave

(U)

E
convex

(U) =

✏

2

hU,LsUi+
C

2

hU,Ui

E
concave

(U) =

1

2✏

X

i2V

KY

k=1

1

4

kui � ekk2L1

+

X

i2V

µi

2

kui � ûik2L2
� C

2

hU,Ui

with C 2 R denoting a constant that is chosen to guarantee the
convexity/concavity of the energy terms. Evaluating the second
derivative of the partitions, and simplifying terms, yields:

C � µ+

1

✏
. (17)

The convex splitting scheme results in an unconditionally
stable time-discretization scheme using a gradient descent
implicit in the convex partition and explicit in the concave
partition, as given by the form [26], [28], [64]

Un+1

ik +dt
�E

convex

�Uik
(Un+1

ik ) = Un
ik�dt

�E
concave

�Uik
(Un

ik). (18)

We write this equation in matrix form as

Un+1

+ dt
�
✏LsU

n+1

+ CUn+1

�

= Un � dt

✓
1

2✏
Tn

+ µ(Un � Û)� CUn

◆
, (19)
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where

Tik =

KX

l=1

1

2

(1� 2�kl) kui � elkL1

KY

m=1

m 6=l

1

4

kui � emk2L1
,

(20)
µ is a diagonal matrix with elements µi, and Û =

(û
1

, . . . , ûND )
T .

Solving (19) for Un+1 gives the iteration equation

Un+1

= B�1


(1 + C dt)Un � dt

2✏
Tn � dtµ(Un � Û)

�

(21)
where

B = (1 + C dt)I+ ✏ dtLs. (22)

This implicit scheme allows the evolution of U to be numer-
ically stable regardless of the time step dt, in spite of the
numerical “stiffness” of the underlying differential equations
which could otherwise force dt to be impractically small.

In general, after the update, the phase field is no longer on
the ⌃

K simplex. Consequently, we use the procedure in [15]
to project back to the simplex.

Computationally, the scheme’s numerical efficiency is in-
creased by using a low-dimensional subspace spanned by
only a small number of eigenfunctions. Let X be the matrix
of eigenvectors of Ls and ⇤ be the diagonal matrix of
corresponding eigenvalues. We now write Ls as its eigende-
composition Ls = X⇤XT , and set

B = X [(1 + C dt)I+ ✏ dt⇤]XT , (23)

but we approximate X by a truncated matrix retaining only
Ne eigenvectors (Ne ⌧ ND), to form a matrix of dimension
ND⇥Ne. The term in brackets is simply a diagonal Ne⇥Ne

matrix. This allows B to be calculated rapidly, but more im-
portantly it allows the update step (21) to be decomposed into
two significantly faster matrix multiplications (as discussed
below), while sacrificing little accuracy in practice.

For initialization, the phase compositions of the fidelity
points are set to the vertices of the simplex corresponding
to the known labels, while the phase compositions of the rest
of the points are set randomly.

The energy minimization proceeds until a steady state con-
dition is reached. The final classes are obtained by assigning
class k to node i if ui is closest to vertex ek on the Gibbs
simplex. Consequently, the calculation is stopped when

maxi kui
n+1 � ui

nk2

maxi kui
n+1k2 < ⌘, (24)

where ⌘ represents a given small positive constant.
The algorithm is outlined in Figure 1. While other operator

splitting methods have been studied for minimization problems
(e.g. [47]), ours has the following advantages: (i) it is direct
(i.e. it does not require the solution of further minimization
problems), (ii) the resolution can be adjusted by increasing
the number of eigenvectors Ne used in the representation of
the phase field, and (iii) it has low complexity. To see this
final point, observe that each iteration of the multiclass GL
algorithm has only O(NDKNe) operations for the main loop,
since matrix Z in Figure 1 only has dimensions Ne ⇥ K,

and then O(NDK logK) operations for the projection to the
simplex. Usually, Ne ⌧ ND and K ⌧ ND, so the dominant
factor is simply the size of the data set ND. In addition, it
is generally the case that the number of iterations required
for convergence is moderate (around 50 iterations). Thus,
practically speaking, the complexity of the algorithm is linear.

B. Multiclass MBO Reduction

Using the standard Gibbs-simplex ⌃

K , the multiclass exten-
sion of the algorithm in [49] is straightforward. The notation is
the same as in the beginning of the section. While the first step
of the algorithm remains the same (except, of course, it is now
in matrix form), the second step of the algorithm is modified
so that the thresholding is converted to the displacement of the
vector field variable towards the closest vertex in the Gibbs
simplex. In other words, the row vector ui

n+ 1
2 of step 1 is

projected back to the simplex (using the approach outlined in
[15] as before) and then a pure phase given by the vertex in
the ⌃

K simplex closest to ui
n+ 1

2 is assigned to be the new
phase composition of node i.

In summary, the new algorithm consists of alternating be-
tween the following two steps to obtain approximate solutions
Un at discrete times:

1) Heat equation with forcing term:

Un+ 1
2 �Un

dt
= �LsU

n � µ(Un � Û). (25)

2) Thresholding:
ui

n+1

= ek, (26)

where vertex ek is the vertex in the simplex closest to
projectToSimplex(ui

n+ 1
2
).

As with the multiclass GL algorithm, when a label is known, it
is represented by the corresponding vertex in the ⌃

K simplex.
The final classification is achieved by assigning node i to class
k if if the kth component of ui is one. Again, as in the binary
case, the diffusion step can be repeated a number of times
before thresholding and when that happens, dt is divided by
the number of diffusion iterations NS .

As in the previous section, we use an implicit numerical
scheme. For the MBO algorithm, the procedure involves
modifying (25) to apply Ls to Un+ 1

2 instead of to Un. This
gives the diffusion step

Un+ 1
2
= B�1

h
Un � dtµ(Un � Û)

i
(27)

where
B = I+ dtLs. (28)

As before, we use the eigendecomposition Ls = X⇤XT to
write

B = X (I+ dt⇤)XT , (29)

which we approximate using the first Ne eigenfunctions. The
initialization procedure and the stopping criterion are the same
as in the previous section.

The multiclass MBO algorithm is summarized in Figure 2.
Its complexity is O(NDKNeNS) operations for the main
loop, O(NDK logK) operations for the projection to the
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Fig. 1: Multiclass GL Algorithm

Require: ✏, dt,ND, Ne,K,µ, Û,⇤,X
Ensure: out = Uend

C  µ+

1

✏

Y  [(1 + C dt)I+ ✏ dt⇤]

�1 XT

for i = 1! ND do
U 0

ik  rand((0, 1)), U0

ik  projectToSimplex(ui
0

). If µi > 0, U 0

ik  ˆU 0

ik
end for
n 1

while Stop criterion not satisfied do
for i = 1! ND, k = 1! K do
T n
ik  

PK
l=1

1

2

(1� 2�kl) kui
n � elkL1

QK
m=1,m 6=l

1

4

kui
n � emk2L1

end for
Z Y

h
(1 + C dt)Un � dt

2✏ T
n � dtµ(Un � Û)

i

Un+1  XZ
for i = 1! ND do
ui

n+1  projectToSimplex(ui
n+1

)

end for
n n+ 1

end while

simplex and O(NDK) operations for thresholding. As in
the multiclass GL algorithm, Ne ⌧ ND and K ⌧ ND.
Furthermore, NS needs to be set to three, and due to the
thresholding step, we find that extremely few iterations (e.g.,
6) are needed to reach steady state. Thus, in practice, the
complexity of this algorithm is linear as well, and typical
runtimes are very rapid as shown in Table III.

Note that graph analogues of continuum operators, such
as gradient and Laplacian, can be constructed using tools of
nonlocal discrete calculus. Hence, it is possible to express
notions of graph curvature for arbitrary graphs, even with no
geometric embedding, but this is not straightforward. For a
more detailed discussion about the MBO scheme and motion
by mean curvature on graphs, we refer the reader to [59].

IV. EXPERIMENTAL RESULTS

We have tested our algorithms on synthetic data, image
labeling, and the MNIST, COIL and WebKB benchmark data
sets. In most of these cases, we compute the symmetric
normalized graph Laplacian matrix Ls, of expression (9),
using N -neighborhood graphs: in other words, vertices i and
j are connected only if i is among the N nearest neighbors of
j or if j is among the N nearest neighbors of i. Otherwise,
we set w(i, j) = 0. This results in a sparse matrix, making
calculations and algorithms more tractable. In addition, for the
similarity function we use the local scaling weight function of
Zelnik-Manor and Perona [65], defined as

w(i, j) = exp

 
� d(i, j)2p

⌧(i)⌧(j)

!
(30)

where d(i, j) is some distance measure between vertices i and
j, such as the L

2

distance, and
p
⌧(i) = d(i, k) defines a local

value for each vertex i, parametrized by M , with k being the
index of the M th closest vertex to i.

With the exception of the image labeling example, all the
results and comparisons with other published methods are
summarized in Tables I and II. Due to the arbitrary selection of
the fidelity points, our reported values correspond to averages
obtained over 10 runs with different random selections. The
timing results and number of iterations of the two methods
are shown in Tables III and IV, respectively. The methods
are labeled as “multiclass GL” and “multiclass MBO”. These
comparisons show that our methods exhibit a performance that
is competitive with or better than the current state-of-the-art
segmentation algorithms.

Parameters are chosen to produce comparable performance
between the methods. For the multiclass GL method, the
convexity constant used is: C = µ+ 1

✏ . As described before in
expression (17), this is the lower limit that guarantees the con-
vexity and concavity of the terms in the energy partition of the
convex splitting strategy employed. For the multiclass MBO
method, as discussed in the previous section, the diffusion step
can be repeated a number of times before thresholding. In all
of our results, we run the diffusion step three times before any
thresholding is done (NS = 3).

To compute the eigenvectors and eigenvalues of the sym-
metric graph Laplacian, we use fast numerical solvers. As we
only need to calculate a portion of the eigenvectors to get
good results, we compute the eigendecompositions using the
Rayleigh-Chebyshev procedure of [1] in all cases except the
image labeling example. This numerical solver is especially
efficient for producing a few of the smallest eigenvectors of
a sparse symmetric matrix. For example, for the MNIST data
set of 70,000 images, it was only necessary to calculate 300

eigenvectors, which is less than 0.5% of the data set size. This



8

Fig. 2: Multiclass MBO Algorithm

Require: dt,ND, Ne, NS ,K,µ, Û,⇤,X
Ensure: out = Uend

Y  
⇣
I+ dt

NS
⇤
⌘�1

XT

for i = 1! ND do
U 0

ik  rand((0, 1)), ui
0  projectToSimplex(ui

0

). If µi > 0, U 0

ik  ˆU 0

ik
end for
n 1

while Stop criterion not satisfied do
for s = 1! NS do
Z Y

h
Un � dt

NS
µ(Un � Û)

i

Un+1  XZ
end for
for i = 1! ND do
ui

n+1  projectToSimplex(ui
n+1

)

ui
n+1  ek, where k is closest simplex vertex to ui

n+1

end for
n n+ 1

end while

is one of the factors that makes our methods very efficient. For
the image labeling experiments, we use the Nyström extension
method described in [4], [29], [30]. The advantage of the latter
method is that it can be efficiently used for very large datasets,
because it appoximates the eigenvalues and eigenvectors of a
large matrix by calculations done on much smaller matrices
formed by randomly chosen parts of the original matrix.

A. Synthetic Data

The synthetic data set we tested our method against is the
three moons data set. It is constructed by generating three half
circles in R2. The two half top circles are unit circles with
centers at (0, 0) and (3, 0). The bottom half circle has radius
1.5 and the center at (1.5, 0.4). Five hundred points from each
of those three half circles are sampled and embedded in R100

by adding Gaussian noise with standard deviation of 0.14 to
each of the 100 components of each embedded point. The
dimensionality of the data set, together with the noise, makes
segmentation a significant challenge.

The weight matrix of the graph edges was calculated using
N = 10 nearest neighbors and local scaling based on the 17

th

closest point (M = 17). The fidelity term was constructed by
labeling 25 points per class, 75 points in total, corresponding
to only 5% of the points in the data set.

The multiclass GL method used the following parameters:
15 eigenvectors, ✏ = 1, dt = 0.1, µ = 30, ⌘ = 10

�7. The
method was able to produce an average of 98.1% of correct
classification, with a corresponding computation time of 0.016
s per run on a 2.4 GHz Intel Core i2 Quad without any parallel
processing.

Analogously, the multiclass MBO method used the follow-
ing parameters: 20 eigenvectors, dt = 0.1, µ = 30, ⌘ = 10

�7.
It was able to segment an average of 99.12% of the points

correctly over 10 runs with only 3 iterations and about 0.01 s
of computation time. One of the results obtained is shown in
Figure 3.

Fig. 3: Segmentation of three moons using multiclass MBO
(98.4667% correct).

Table I gives published results from other related methods,
for comparison. Note that the results for p-Laplacians [11],
Cheeger cuts [57] and binary GL are for the simpler binary
problem of two moons (also embedded in R100). While,
strictly speaking, these are unsupervised methods, they all
incorporate prior knowledge such as a mass balance constraint.
We therefore consider them comparable to our SSL approach.
The “tree GL” method [31] uses a scalar multiclass GL
approach with a tree metric. It can be seen that our methods
achieve the highest accuracy on this test problem.

The parameter ✏ determines a scale for the diffuse interface
and therefore has consequences in the minimization of the GL
energy functional, as discussed in Section II-B. Smaller values
of ✏ define a smaller length for the diffuse interface, and at
the same time, increasing the relative weight of the potential
term with respect to the smoothing term. Therefore, as the
parameter ✏ decreases, sharp transitions are generated which
in general constitute more accurate classifications. Figure 4
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TABLE I: Results for benchmark data sets: Moons, MNIST, COIL and WebKB

Two/Three moons
Method Accuracy

spectral clustering [31] 80%
p-Laplacian [11] 94%

Cheeger cuts [57] 95.4%
tree GL [31] 97.4%

binary GL [4] 97.7%
multiclass GL 98.1%

multiclass MBO 99.12%

MNIST
Method Accuracy

p-Laplacian [11] 87.1%
multicut normalized 1-cut [40] 87.64%

linear classifiers [45], [46] 88%
Cheeger cuts [57] 88.2%

boosted stumps [43], [46] 92.3-98.74%
transductive classification [58] 92.6%

tree GL [31] 93.0%
k-nearest neighbors [45], [46] 95.0-97.17%

neural/convolutional nets [17], [45], [46] 95.3-99.65%
nonlinear classifiers [45], [46] 96.4-96.7%

multiclass GL 96.8%
multiclass MBO 96.91%
SVM [21], [45] 98.6-99.32%

COIL
Method Accuracy

k-nearest neighbors [56] 83.5%
LapRLS [3], [56] 87.8%

sGT [42], [56] 89.9%
SQ-Loss-I [56] 90.9%

MP [56] 91.1%
multiclass GL 91.2%

multiclass MBO 91.46%

WebKB
Method Accuracy

vector method [12] 64.47%
k-nearest neighbors (k = 10) [12] 72.56%

centroid (normalized sum) [12] 82.66%
naive Bayes [12] 83.52%

SVM (linear kernel) [12] 85.82%
multiclass GL 87.2%

multiclass MBO 88.48%

TABLE II: WebKB results with varying fidelity percentage

Method 10% 15% 20% 25% 30%
WebKB results for Multiclass GL (% correct) 81.3% 84.3% 85.8% 86.7% 87.2%

WebKB results for Multiclass MBO (% correct) 83.71% 85.75% 86.81% 87.74% 88.48%

TABLE III: Comparison of timings (in seconds)

Data set three moons color images MNIST COIL WebKB
Size 1.5 K 144 K 70 K 1.5 K 4.2 K

Graph Calculation 0.771 0.52 6183.1 0.95 399.35
Eigenvector Calculation 0.331 27.7 1683.5 0.19 64.78

Multiclass GL 0.016 837.1 153.1 0.035 0.49
Multiclass MBO 0.013 40.0 15.4 0.03 0.05

TABLE IV: Comparison of number of iterations

Data set three moons color images MNIST COIL WebKB
Multiclass GL 15 770 90 12 20

Multiclass MBO 3 44 7 6 7

compares the performance for two different values of ✏. Note
that the GL results for large ✏ are roughly comparable to those
given by a standard spectral clustering approach [31].

B. Co-segmentation

We tested our algorithms on the task of co-segmentation.
In this task, two images with a similar topic are used. On
one of the images, several regions are labeled. The image
labeling task looks for a procedure to transfer the knowledge
about regions, specified by the labeled segmentation, onto the
unlabeled image. Thus, the limited knowledge about what

(a) ✏ = 2.5 (b) ✏ = 1

Fig. 4: Three-moons segmentation. Left: ✏ = 2.5 (81.8%
correct). Right: ✏ = 1 (97.1 % correct).
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defines a region is used to segment similar images without
the need for further labelings.

(a) Original Image (b) Labeled Data

Fig. 5: Labeled Color Image

(a) Image to Segment

(b) Multiclass GL (c) Multiclass MBO

Fig. 6: Resulting Color Image Segmentation

On the color image of cows, shown in Figure 5a, some parts
of the sky, grass, black cow and red cow have been labeled,
as shown in Figure 5b. This is a 319⇥ 239 color image. The
image to be segmented is a 319⇥ 213 color image shown in
Figure 6a. The objective is to identify in this second image
regions that are similar to the components in the labeled image.

To construct the weight matrix, we use feature vectors
defined as the set of intensity values in the neighborhood
of a pixel. The neighborhood is a patch of size 5 ⇥ 5.
Red, green and blue channels are appended, resulting in a
feature vector of dimension 75. A Gaussian similarity graph, as
described in equation (7), is constructed with � = 22 for both
algorithms. Note that for both the labeled and the unlabeled
image, nodes that represent similar patches are connected by
high-weighted edges, independent of their position within the
image. The transfer of information is then enabled through the
resulting graph, illustrating the nonlocal characteristics of this
unembedded graph-based method.

The eigendecomposition of the Laplacian matrix is approx-
imated using the Nyström method. This involves selecting
250 points randomly to generate a submatrix, whose eigen-
decomposition is used in combination with matrix completion
techniques to generate the approximate eigenvalues for the
complete set. Details of the Nyström method are given else-

where [4], [29], [30]. This approximation drastically reduces
the computation time, as seen in Table III.

The multiclass Ginzburg-Landau method used the following
parameters: 200 eigenvectors, ✏ = 1, dt = 0.005, µ = 50 and
⌘ = 10

�7.
The multiclass MBO method used the following parameters:

250 eigenvectors, dt = 0.005, µ = 300, ⌘ = 10

�7.
One of the results of each of our two methods (using the

same fidelity set) is depicted in Figure 6. It can be seen that
both methods are able to transfer the identity of all the classes,
with slightly better results for mutliclass MBO. Most of the
mistakes made correspond to identifying some borders of the
red cow as part of the black cow. Multiclass GL also has
problems identifying parts of the grass.

C. MNIST Data

The MNIST data set [46] is composed of 70, 000 28 ⇥ 28

images of handwritten digits 0 through 9. Examples of entries
can be found in Figure 7. The task is to classify each of the
images into the corresponding digit. The images include digits
from 0 to 9; thus, this is a 10 class segmentation problem.

Fig. 7: Examples of digits from the MNIST data base

To construct the weight matrix, we used N = 8 nearest
neighbors with local scaling based on the 8

th closest neighbor
(M = 8). Note that we perform no preprocessing, i.e. the
graph is constructed using the 28⇥28 images. For the fidelity
term, 250 images per class (2500 images corresponding to
3.6% of the data) are chosen randomly.

The multiclass GL method used the following parameters:
300 eigenvectors, ✏ = 1, dt = 0.15, µ = 50 and ⌘ = 10

�7.
The set of 70,000 images was segmented with an average
accuracy (over 10 runs) of 96.8% of the digits classified
correctly in an average time of 153 s.

The multiclass MBO method used the following parameters:
300 eigenvectors, dt = 0.15, µ = 50, ⌘ = 10

�7. The algorithm
segmented an average of 96.91% of the digits correctly over
10 runs in only 4 iterations and 15.382 s. We display the
confusion matrix in Table V. Note that most of the mistakes
were in distinguishing digits 4 and 9, and digits 2 and 7.

Table I compares our results with those from other methods
in the literature. As with the three moon problem, some
of these are based on unsupervised methods but incorporate
enough prior information that they can fairly be compared with
SSL methods. The methods of linear/nonlinear classifers, k-
nearest neighbors, boosted stumps, neural and convolutional
nets and SVM are all supervised learning approaches, taking
60,000 of the digits as a training set and 10,000 digits as a
testing set [46], in comparison to our SSL approaches where
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TABLE V: Confusion Matrix for MNIST Data Segmentation: MBO Scheme

Obtained/True 0 1 2 3 4 5 6 7 8 9
0 6844 20 41 3 3 15 21 1 20 17
1 5 7789 32 8 34 1 14 63 51 14
2 5 22 6731 42 2 4 1 23 19 8
3 0 3 20 6890 1 86 0 1 81 90
4 1 17 6 2 6625 3 7 12 28 67
5 9 0 3 70 0 6077 28 2 109 14
6 31 5 11 3 22 69 6800 0 29 5
7 2 16 117 44 12 9 0 7093 20 101
8 2 2 21 46 4 17 5 2 6398 22
9 4 3 8 33 121 32 0 96 70 6620

we take only 3.6% of the points for the fidelity term. Our
algorithms are nevertheless competitive with, and in most
cases outperform, these supervised methods. Moreover, we
perform no preprocessing or initial feature extraction on the
image data, unlike most of the other methods we compare with
(we exclude from the comparison the methods that deskewed
the image). While there is a computational price to be paid
in forming the graph when data points use all 784 pixels as
features (see graph calculation time in Table III), this is a
one-time operation that conceptually simplifies our approach.

D. COIL dataset

We evaluated our performance on the benchmark COIL
data set [14], [52]. This is a set of color 128 ⇥ 128 images
of 100 objects, taken at different angles. The red channel
of each image was then downsampled to 16 ⇥ 16 pixels by
averaging over blocks of 8⇥ 8 pixels. Then 24 of the objects
were randomly selected and then partitioned into six classes.
Discarding 38 images from each class leaves 250 per class,
giving a data set of 1500 data points.

To construct the weight matrix, we used N = 4 nearest
neighbors with local scaling based on the 4

th closest neighbor
(M = 4). The fidelity term was constructed by labeling 10%
of the points, selected at random.

For multiclass GL, the parameters were: 35 eigenvectors,
✏ = 1, dt = 0.05, µ = 50 and ⌘ = 10

�7. This resulted in
91.2% of the points classified correctly (average) in 0.035 s.

For multiclass MBO, the parameters were: 50 eigenvectors,
dt = 0.2, µ = 100, ⌘ = 10

�7. We obtained an accuracy
of 91.46%, averaged over 10 runs. The procedure took 6

iterations and 0.03 s.
Comparative results reported in [56] are shown in Table I.

These are all SSL methods (with the exception of k-nearest
neighbors which is supervised), using 10% fidelity just as we
do. Our results are of comparable or greater accuracy.

E. WebKB dataset

Finally, we tested our methods on the task of text clas-
sification on the WebKB data set [20]. This is a collection
of webpages from Cornell, Texas, Washington and Wisconsin
universities, as well as other miscellaneous pages from other
universities. The webpages are to be divided into four classes:

project, course, faculty and student. The data set is prepro-
cessed as described in [12].

To construct the weight matrix, we used 575 nearest neigh-
bors. Tfidf term weighting [12] is used to represent the website
feature vectors. They were then normalized to unitary length.
The weight matrix points are calculated using cosine similarity.

For the multiclass GL, the parameters were: 250 eigenvec-
tors, ✏ = 1, dt = 1, µ = 50 and ⌘ = 10

�7. The average
accuracies obtained for fidelity sets of different sizes are given
in Table II. The average computation time was 0.49 s.

For the multiclass MBO, the parameters were: 250 eigen-
vectors, dt = 1, µ = 4, ⌘ = 10

�7. The average accuracies
obtained for fidelity sets of different sizes are given in Table II.
The procedure took an average of 0.05 s and 7 iterations.

We compare our results with those of several supervised
learning methods reported in [12], shown in Table I. For these
methods, two-thirds of the data were used for training, and one
third for testing. Our SSL methods obtain higher accuracy,
using only 20% fidelity (for multiclass MBO). Note that a
larger sample of points for the fidelity term reduces the error in
the results, as shown in Table II. Nevertheless, the accuracy is
high even for the smallest fidelity sets. Therefore, the methods
appear quite adequate for the SSL setting where only a few
labeled data points are known beforehand.

Multiclass GL and MBO: All the results reported point
out that both multiclass GL and multiclass MBO perform well
in terms of data segmentation accuracy. While the ability to
tune multiclass GL can be an advantage, multiclass MBO is
simpler and, in our examples, displays even better performance
in terms of its greater accuracy and the fewer number of
iterations required. Note that even though multiclass GL leads
to the minimization of a non-convex function, in practice
the results are comparable with other convex TV-based graph
methods such as [9]. Exploring the underlying connections
of the energy evolution of these methods and the energy
landscape for the relaxed Cheeger cut minimization recently
established in [8] are to be explored in future work.

V. CONCLUSIONS

We have presented two graph-based algorithms for multi-
class classification of high-dimensional data. The two algo-
rithms are based on the diffuse interface model using the
Ginzburg-Landau functional, and the multiclass extension is
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obtained using the Gibbs simplex. The first algorithm min-
imizes the functional using gradient descent and a convex-
splitting scheme. The second algorithm executes a simple
scheme based on an adaptation of the classical numerical MBO
method. It uses fewer parameters than the first algorithm, and
while this may in some cases make it more restrictive, in our
experiments it was highly accurate and efficient.

Testing the algorithms on synthetic data, image labeling and
benchmark data sets shows that the results are competitive
with or better than some of the most recent and best pub-
lished algorithms in the literature. In addition, our methods
have several advantages. First, they are simple and efficient,
avoiding the need for intricate function minimizations or heavy
preprocessing of data. Second, a relatively small proportion
of fidelity points is needed for producing an accurate result.
For most of our data sets, we used at most 10% of the data
points for the fidelity term; for synthetic data and the two
images, we used no more than 5%. Furthermore, as long as
the fidelity set contains samples of all classes in the problem,
a random initialization is enough to produce good multiclass
segmentation results. Finally, our methods do not use one-vs-
all or sequences of binary segmentations that are needed for
some other multiclass methods. We therefore avoid the bias
and extra processing that is often inherent in those methods.

Our algorithms can take advantage of the sparsity of the
neighborhood graphs generated by the local scaling procedure
of Zelnik-Manor and Perona [65]. A further reason for the
strong practical performance of our methods is that the mini-
mization equations use only the graph Laplacian, and do not
contain divergences or any other first-order derivative terms.
This allows us to use rapid numerical methods. The Laplacian
can easily be inverted by projecting onto its eigenfunctions,
and in practice, we only need to keep a small number of these.
Techniques such as the fast numerical Rayleigh-Chebyshev
method of Anderson [1] are very efficient for finding the
small subset of eigenvalues and eigenvectors needed. In certain
cases, we obtain additional savings in processing times by
approximating the eigendecomposition of the Laplacian matrix
through the Nyström method [4], [29], [30], which is effective
even for very large matrices: we need only compute a small
fraction of the weights in the graph, enabling the approxima-
tion of the eigendecomposition of a fully connected weight
matrix using computations on much smaller matrices.

Thus, there is a significant computational benefit in not
having to calculate any first-order differential operators. In
view of this, we have found that for general graph problems,
even though GL requires minimizing a non-convex functional,
the results are comparable in accuracy to convex TV-based
graph methods such as [9]. For MBO, the results are similarly
accurate, with the further advantage that the algorithm is very
rapid. We note that for other problems such as in image
processing that are suited to a continuum treatment, convex
methods and maxflow-type algorithms are in many cases the
best approach [13], [62]. It would be very interesting to try to
extend our gradient-free numerical approach to graph-based
methods that directly use convex minimization, such as the
method described in [63].

Finally, comparatively speaking, multiclass MBO performed

better than multiclass GL in terms of accuracy and conver-
gence time for all of the data sets we have studied. Nev-
ertheless, we anticipate that more intricate geometries could
impair its effectiveness. In those cases, multiclass GL might
still perform well, due to the additional control provided by
tuning ✏ to increase the thickness of the interfaces, producing
smoother decision functions.
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